Processing math: 100%
Subalgebra A31E16
3 out of 119
Computations done by the calculator project.

Subalgebra type: A31 (click on type for detailed printout).
Centralizer: A22+A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A31
Basis of Cartan of centralizer: 3 vectors: (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A31+A11 , A31+A21 , 2A31 , A81+A31 , A91+A31 , A31+A21+A11 , A81+A31+A11 , A22+A31 , A22+A31+A11 .

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g23+g30+g34
Positive simple generators: g34+g30+g23
Cartan symmetric matrix: (2/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6)
Decomposition of ambient Lie algebra: 2V3ω19V2ω116Vω111V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ψ1+2ψ2+2ψ3V2ω1+2ψ2+2ψ3Vω1+2ψ12ψ2+4ψ3V3ω1+2ψ1Vω1+2ψ1+4ψ22ψ3V2ω12ψ2+4ψ3V2ψ2+2ψ3V4ψ1V2ω1+4ψ22ψ3Vω12ψ1+2ψ2+2ψ32Vω1+2ψ1V2ψ2+4ψ33V2ω1V4ψ22ψ3Vω12ψ12ψ2+4ψ3Vω1+2ψ14ψ2+2ψ3V3ω12ψ1Vω12ψ1+4ψ22ψ3Vω1+2ψ1+2ψ24ψ3V2ω14ψ2+2ψ33V0V2ω1+2ψ24ψ32Vω12ψ1Vω1+2ψ12ψ22ψ3V4ψ2+2ψ3V2ω12ψ22ψ3V2ψ24ψ3Vω12ψ14ψ2+2ψ3Vω12ψ1+2ψ24ψ3V4ψ1V2ψ22ψ3Vω12ψ12ψ22ψ3
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 38) ; the vectors are over the primal subalgebra.g11+g7g2g6+g1g5+g3h5+h3h6+h1h2g3+g5g1+g6g2g7+g11g16g21g10g20g15+g4g24+g4g25g9g14g18g27+g8g19+g8g12g13g22g17g31g28g33g30g34g23g32g26g29g35g36
weight00000000000ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω12ω12ω12ω12ω12ω12ω12ω12ω12ω13ω13ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 2ψ22ψ34ψ12ψ24ψ34ψ2+2ψ30004ψ22ψ32ψ2+4ψ34ψ12ψ2+2ψ3ω12ψ12ψ22ψ3ω12ψ1+2ψ24ψ3ω12ψ14ψ2+2ψ3ω1+2ψ12ψ22ψ3ω12ψ1ω12ψ1ω1+2ψ1+2ψ24ψ3ω12ψ1+4ψ22ψ3ω1+2ψ14ψ2+2ψ3ω12ψ12ψ2+4ψ3ω1+2ψ1ω1+2ψ1ω12ψ1+2ψ2+2ψ3ω1+2ψ1+4ψ22ψ3ω1+2ψ12ψ2+4ψ3ω1+2ψ1+2ψ2+2ψ32ω12ψ22ψ32ω1+2ψ24ψ32ω14ψ2+2ψ32ω12ω12ω12ω1+4ψ22ψ32ω12ψ2+4ψ32ω1+2ψ2+2ψ33ω12ψ13ω1+2ψ1
Isotypic module decomposition over primal subalgebra (total 33 isotypic components).
Isotypical components + highest weightV2ψ22ψ3 → (0, 0, -2, -2)V4ψ1 → (0, -4, 0, 0)V2ψ24ψ3 → (0, 0, 2, -4)V4ψ2+2ψ3 → (0, 0, -4, 2)V0 → (0, 0, 0, 0)V4ψ22ψ3 → (0, 0, 4, -2)V2ψ2+4ψ3 → (0, 0, -2, 4)V4ψ1 → (0, 4, 0, 0)V2ψ2+2ψ3 → (0, 0, 2, 2)Vω12ψ12ψ22ψ3 → (1, -2, -2, -2)Vω12ψ1+2ψ24ψ3 → (1, -2, 2, -4)Vω12ψ14ψ2+2ψ3 → (1, -2, -4, 2)Vω1+2ψ12ψ22ψ3 → (1, 2, -2, -2)Vω12ψ1 → (1, -2, 0, 0)Vω1+2ψ1+2ψ24ψ3 → (1, 2, 2, -4)Vω12ψ1+4ψ22ψ3 → (1, -2, 4, -2)Vω1+2ψ14ψ2+2ψ3 → (1, 2, -4, 2)Vω12ψ12ψ2+4ψ3 → (1, -2, -2, 4)Vω1+2ψ1 → (1, 2, 0, 0)Vω12ψ1+2ψ2+2ψ3 → (1, -2, 2, 2)Vω1+2ψ1+4ψ22ψ3 → (1, 2, 4, -2)Vω1+2ψ12ψ2+4ψ3 → (1, 2, -2, 4)Vω1+2ψ1+2ψ2+2ψ3 → (1, 2, 2, 2)V2ω12ψ22ψ3 → (2, 0, -2, -2)V2ω1+2ψ24ψ3 → (2, 0, 2, -4)V2ω14ψ2+2ψ3 → (2, 0, -4, 2)V2ω1 → (2, 0, 0, 0)V2ω1+4ψ22ψ3 → (2, 0, 4, -2)V2ω12ψ2+4ψ3 → (2, 0, -2, 4)V2ω1+2ψ2+2ψ3 → (2, 0, 2, 2)V3ω12ψ1 → (3, -2, 0, 0)V3ω1+2ψ1 → (3, 2, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21W22W23W24W25W26W27W28W29W30W31W32W33
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g11+g7
g2
g6+g1
g5+g3
Cartan of centralizer component.
h5+h3
h6+h1
h2
g3+g5
g1+g6
g2
g7+g11
g16
g17
g21
g22
g10
g13
g20
g12
g15+g4
g8+g19
g24+g4
g8+g27
g25
g18
g9
g14
g14
g9
g18
g25
g27+g8
g4g24
g19+g8
g4g15
g12
g20
g13
g10
g22
g21
g17
g16
g31
g11+g7
2g29
g28
g6g1
2g26
g33
g5g3
2g32
Semisimple subalgebra component.
g34g30g23
2h6+4h5+6h4+4h3+3h2+2h1
2g23+2g30+2g34
g34
h62h52h42h3h2h1
2g34
g30
h6h52h4h3h2h1
2g30
g32
g3g5
2g33
g26
g1+g6
2g28
g29
g7+g11
2g31
g35
g24+g15g4
2g82g192g27
6g36
g36
g27+g19g8
2g4+2g15+2g24
6g35
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000000000ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
3ω1
ω1
ω1
3ω1
3ω1
ω1
ω1
3ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ψ22ψ34ψ12ψ24ψ34ψ2+2ψ304ψ22ψ32ψ2+4ψ34ψ12ψ2+2ψ3ω12ψ12ψ22ψ3
ω12ψ12ψ22ψ3
ω12ψ1+2ψ24ψ3
ω12ψ1+2ψ24ψ3
ω12ψ14ψ2+2ψ3
ω12ψ14ψ2+2ψ3
ω1+2ψ12ψ22ψ3
ω1+2ψ12ψ22ψ3
ω12ψ1
ω12ψ1
ω1+2ψ1+2ψ24ψ3
ω1+2ψ1+2ψ24ψ3
ω12ψ1+4ψ22ψ3
ω12ψ1+4ψ22ψ3
ω1+2ψ14ψ2+2ψ3
ω1+2ψ14ψ2+2ψ3
ω12ψ12ψ2+4ψ3
ω12ψ12ψ2+4ψ3
ω1+2ψ1
ω1+2ψ1
ω12ψ1+2ψ2+2ψ3
ω12ψ1+2ψ2+2ψ3
ω1+2ψ1+4ψ22ψ3
ω1+2ψ1+4ψ22ψ3
ω1+2ψ12ψ2+4ψ3
ω1+2ψ12ψ2+4ψ3
ω1+2ψ1+2ψ2+2ψ3
ω1+2ψ1+2ψ2+2ψ3
2ω12ψ22ψ3
2ψ22ψ3
2ω12ψ22ψ3
2ω1+2ψ24ψ3
2ψ24ψ3
2ω1+2ψ24ψ3
2ω14ψ2+2ψ3
4ψ2+2ψ3
2ω14ψ2+2ψ3
2ω1
0
2ω1
2ω1
0
2ω1
2ω1+4ψ22ψ3
4ψ22ψ3
2ω1+4ψ22ψ3
2ω12ψ2+4ψ3
2ψ2+4ψ3
2ω12ψ2+4ψ3
2ω1+2ψ2+2ψ3
2ψ2+2ψ3
2ω1+2ψ2+2ψ3
3ω12ψ1
ω12ψ1
ω12ψ1
3ω12ψ1
3ω1+2ψ1
ω1+2ψ1
ω1+2ψ1
3ω1+2ψ1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ψ22ψ3M4ψ1M2ψ24ψ3M4ψ2+2ψ3M0M4ψ22ψ3M2ψ2+4ψ3M4ψ1M2ψ2+2ψ3Mω12ψ12ψ22ψ3Mω12ψ12ψ22ψ3Mω12ψ1+2ψ24ψ3Mω12ψ1+2ψ24ψ3Mω12ψ14ψ2+2ψ3Mω12ψ14ψ2+2ψ3Mω1+2ψ12ψ22ψ3Mω1+2ψ12ψ22ψ3Mω12ψ1Mω12ψ1Mω1+2ψ1+2ψ24ψ3Mω1+2ψ1+2ψ24ψ3Mω12ψ1+4ψ22ψ3Mω12ψ1+4ψ22ψ3Mω1+2ψ14ψ2+2ψ3Mω1+2ψ14ψ2+2ψ3Mω12ψ12ψ2+4ψ3Mω12ψ12ψ2+4ψ3Mω1+2ψ1Mω1+2ψ1Mω12ψ1+2ψ2+2ψ3Mω12ψ1+2ψ2+2ψ3Mω1+2ψ1+4ψ22ψ3Mω1+2ψ1+4ψ22ψ3Mω1+2ψ12ψ2+4ψ3Mω1+2ψ12ψ2+4ψ3Mω1+2ψ1+2ψ2+2ψ3Mω1+2ψ1+2ψ2+2ψ3M2ω12ψ22ψ3M2ψ22ψ3M2ω12ψ22ψ3M2ω1+2ψ24ψ3M2ψ24ψ3M2ω1+2ψ24ψ3M2ω14ψ2+2ψ3M4ψ2+2ψ3M2ω14ψ2+2ψ3M2ω1M0M2ω1M2ω1M0M2ω1M2ω1+4ψ22ψ3M4ψ22ψ3M2ω1+4ψ22ψ3M2ω12ψ2+4ψ3M2ψ2+4ψ3M2ω12ψ2+4ψ3M2ω1+2ψ2+2ψ3M2ψ2+2ψ3M2ω1+2ψ2+2ψ3M3ω12ψ1Mω12ψ1Mω12ψ1M3ω12ψ1M3ω1+2ψ1Mω1+2ψ1Mω1+2ψ1M3ω1+2ψ1
Isotypic characterM2ψ22ψ3M4ψ1M2ψ24ψ3M4ψ2+2ψ33M0M4ψ22ψ3M2ψ2+4ψ3M4ψ1M2ψ2+2ψ3Mω12ψ12ψ22ψ3Mω12ψ12ψ22ψ3Mω12ψ1+2ψ24ψ3Mω12ψ1+2ψ24ψ3Mω12ψ14ψ2+2ψ3Mω12ψ14ψ2+2ψ3Mω1+2ψ12ψ22ψ3Mω1+2ψ12ψ22ψ32Mω12ψ12Mω12ψ1Mω1+2ψ1+2ψ24ψ3Mω1+2ψ1+2ψ24ψ3Mω12ψ1+4ψ22ψ3Mω12ψ1+4ψ22ψ3Mω1+2ψ14ψ2+2ψ3Mω1+2ψ14ψ2+2ψ3Mω12ψ12ψ2+4ψ3Mω12ψ12ψ2+4ψ32Mω1+2ψ12Mω1+2ψ1Mω12ψ1+2ψ2+2ψ3Mω12ψ1+2ψ2+2ψ3Mω1+2ψ1+4ψ22ψ3Mω1+2ψ1+4ψ22ψ3Mω1+2ψ12ψ2+4ψ3Mω1+2ψ12ψ2+4ψ3Mω1+2ψ1+2ψ2+2ψ3Mω1+2ψ1+2ψ2+2ψ3M2ω12ψ22ψ3M2ψ22ψ3M2ω12ψ22ψ3M2ω1+2ψ24ψ3M2ψ24ψ3M2ω1+2ψ24ψ3M2ω14ψ2+2ψ3M4ψ2+2ψ3M2ω14ψ2+2ψ3M2ω1M0M2ω12M2ω12M02M2ω1M2ω1+4ψ22ψ3M4ψ22ψ3M2ω1+4ψ22ψ3M2ω12ψ2+4ψ3M2ψ2+4ψ3M2ω12ψ2+4ψ3M2ω1+2ψ2+2ψ3M2ψ2+2ψ3M2ω1+2ψ2+2ψ3M3ω12ψ1Mω12ψ1Mω12ψ1M3ω12ψ1M3ω1+2ψ1Mω1+2ψ1Mω1+2ψ1M3ω1+2ψ1

Semisimple subalgebra: W_{27}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6}+W_{7}+W_{8}+W_{9}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (350.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00): (200.00, 312.50)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 5853604 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
1*2 (unknown) gens:
(
x_{1} g_{-23}+x_{2} g_{-26}+x_{3} g_{-28}+x_{4} g_{-29}+x_{5} g_{-30}+x_{6} g_{-31}+x_{7} g_{-32}+x_{8} g_{-33} \\ +x_{9} g_{-34}, x_{18} g_{34}+x_{17} g_{33}+x_{16} g_{32}+x_{15} g_{31}+x_{14} g_{30}+x_{13} g_{29}+x_{12} g_{28}+x_{11} g_{26} \\ +x_{10} g_{23})
h: (2, 3, 4, 6, 4, 2), e = combination of g_{23} g_{26} g_{28} g_{29} g_{30} g_{31} g_{32} g_{33} g_{34} , f= combination of g_{-23} g_{-26} g_{-28} g_{-29} g_{-30} g_{-31} g_{-32} g_{-33} g_{-34} Positive weight subsystem: 1 vectors: (1)
Symmetric Cartan default scale: \begin{pmatrix}
2\\
\end{pmatrix}Character ambient Lie algebra: 2V_{3\omega_{1}}+9V_{2\omega_{1}}+18V_{\omega_{1}}+20V_{0}+18V_{-\omega_{1}}+9V_{-2\omega_{1}}+2V_{-3\omega_{1}}
A necessary system to realize the candidate subalgebra.
x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11}
+x_{1} x_{10} -3= 0
2x_{9} x_{18} +x_{8} x_{17} +2x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +2x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11}
+x_{1} x_{10} -4= 0
2x_{9} x_{18} +2x_{8} x_{17} +x_{7} x_{16} +2x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11}
+x_{1} x_{10} -4= 0
x_{8} x_{15} +x_{5} x_{12} +x_{2} x_{10} = 0
x_{7} x_{13} +x_{5} x_{11} +x_{3} x_{10} = 0
x_{9} x_{15} +x_{7} x_{12} +x_{4} x_{10} = 0
x_{9} x_{13} +x_{8} x_{11} +x_{6} x_{10} = 0
x_{6} x_{17} +x_{3} x_{14} +x_{1} x_{11} = 0
x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{5} x_{14} +x_{4} x_{13} +x_{2} x_{11} -2= 0
x_{9} x_{17} +x_{7} x_{14} +x_{4} x_{11} = 0
x_{4} x_{16} +x_{2} x_{14} +x_{1} x_{12} = 0
x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{3} x_{12} -2= 0
x_{9} x_{16} +x_{8} x_{14} +x_{6} x_{12} = 0
x_{6} x_{18} +x_{3} x_{16} +x_{1} x_{13} = 0
x_{8} x_{18} +x_{5} x_{16} +x_{2} x_{13} = 0
x_{4} x_{18} +x_{2} x_{17} +x_{1} x_{15} = 0
x_{7} x_{18} +x_{5} x_{17} +x_{3} x_{15} = 0
The above system after transformation.
x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11}
+x_{1} x_{10} -3= 0
2x_{9} x_{18} +x_{8} x_{17} +2x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +2x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11}
+x_{1} x_{10} -4= 0
2x_{9} x_{18} +2x_{8} x_{17} +x_{7} x_{16} +2x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11}
+x_{1} x_{10} -4= 0
x_{8} x_{15} +x_{5} x_{12} +x_{2} x_{10} = 0
x_{7} x_{13} +x_{5} x_{11} +x_{3} x_{10} = 0
x_{9} x_{15} +x_{7} x_{12} +x_{4} x_{10} = 0
x_{9} x_{13} +x_{8} x_{11} +x_{6} x_{10} = 0
x_{6} x_{17} +x_{3} x_{14} +x_{1} x_{11} = 0
x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{5} x_{14} +x_{4} x_{13} +x_{2} x_{11} -2= 0
x_{9} x_{17} +x_{7} x_{14} +x_{4} x_{11} = 0
x_{4} x_{16} +x_{2} x_{14} +x_{1} x_{12} = 0
x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{3} x_{12} -2= 0
x_{9} x_{16} +x_{8} x_{14} +x_{6} x_{12} = 0
x_{6} x_{18} +x_{3} x_{16} +x_{1} x_{13} = 0
x_{8} x_{18} +x_{5} x_{16} +x_{2} x_{13} = 0
x_{4} x_{18} +x_{2} x_{17} +x_{1} x_{15} = 0
x_{7} x_{18} +x_{5} x_{17} +x_{3} x_{15} = 0
For the calculator:
(DynkinType =A^{3}_1; ElementsCartan =((2, 3, 4, 6, 4, 2)); generators =(x_{1} g_{-23}+x_{2} g_{-26}+x_{3} g_{-28}+x_{4} g_{-29}+x_{5} g_{-30}+x_{6} g_{-31}+x_{7} g_{-32}+x_{8} g_{-33}+x_{9} g_{-34}, x_{18} g_{34}+x_{17} g_{33}+x_{16} g_{32}+x_{15} g_{31}+x_{14} g_{30}+x_{13} g_{29}+x_{12} g_{28}+x_{11} g_{26}+x_{10} g_{23}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +x_{1} x_{10} -3, 2x_{9} x_{18} +x_{8} x_{17} +2x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +2x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +x_{1} x_{10} -4, 2x_{9} x_{18} +2x_{8} x_{17} +x_{7} x_{16} +2x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +x_{1} x_{10} -4, x_{8} x_{15} +x_{5} x_{12} +x_{2} x_{10} , x_{7} x_{13} +x_{5} x_{11} +x_{3} x_{10} , x_{9} x_{15} +x_{7} x_{12} +x_{4} x_{10} , x_{9} x_{13} +x_{8} x_{11} +x_{6} x_{10} , x_{6} x_{17} +x_{3} x_{14} +x_{1} x_{11} , x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{5} x_{14} +x_{4} x_{13} +x_{2} x_{11} -2, x_{9} x_{17} +x_{7} x_{14} +x_{4} x_{11} , x_{4} x_{16} +x_{2} x_{14} +x_{1} x_{12} , x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{3} x_{12} -2, x_{9} x_{16} +x_{8} x_{14} +x_{6} x_{12} , x_{6} x_{18} +x_{3} x_{16} +x_{1} x_{13} , x_{8} x_{18} +x_{5} x_{16} +x_{2} x_{13} , x_{4} x_{18} +x_{2} x_{17} +x_{1} x_{15} , x_{7} x_{18} +x_{5} x_{17} +x_{3} x_{15} )