Highest vectors of representations (total 38) ; the vectors are over the primal subalgebra. | −g11+g−7 | g−2 | g6+g−1 | −g5+g−3 | −h5+h3 | −h6+h1 | h2 | −g3+g−5 | g1+g−6 | g2 | −g7+g−11 | g16 | g21 | g10 | g20 | g15+g4 | g24+g4 | g25 | g9 | g14 | g18 | g27+g8 | g19+g8 | g12 | g13 | g22 | g17 | g31 | g28 | g33 | g30 | g34 | g23 | g32 | g26 | g29 | g35 | g36 |
weight | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 3ω1 | 3ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −2ψ2−2ψ3 | −4ψ1 | 2ψ2−4ψ3 | −4ψ2+2ψ3 | 0 | 0 | 0 | 4ψ2−2ψ3 | −2ψ2+4ψ3 | 4ψ1 | 2ψ2+2ψ3 | ω1−2ψ1−2ψ2−2ψ3 | ω1−2ψ1+2ψ2−4ψ3 | ω1−2ψ1−4ψ2+2ψ3 | ω1+2ψ1−2ψ2−2ψ3 | ω1−2ψ1 | ω1−2ψ1 | ω1+2ψ1+2ψ2−4ψ3 | ω1−2ψ1+4ψ2−2ψ3 | ω1+2ψ1−4ψ2+2ψ3 | ω1−2ψ1−2ψ2+4ψ3 | ω1+2ψ1 | ω1+2ψ1 | ω1−2ψ1+2ψ2+2ψ3 | ω1+2ψ1+4ψ2−2ψ3 | ω1+2ψ1−2ψ2+4ψ3 | ω1+2ψ1+2ψ2+2ψ3 | 2ω1−2ψ2−2ψ3 | 2ω1+2ψ2−4ψ3 | 2ω1−4ψ2+2ψ3 | 2ω1 | 2ω1 | 2ω1 | 2ω1+4ψ2−2ψ3 | 2ω1−2ψ2+4ψ3 | 2ω1+2ψ2+2ψ3 | 3ω1−2ψ1 | 3ω1+2ψ1 |
Isotypical components + highest weight | V−2ψ2−2ψ3 → (0, 0, -2, -2) | V−4ψ1 → (0, -4, 0, 0) | V2ψ2−4ψ3 → (0, 0, 2, -4) | V−4ψ2+2ψ3 → (0, 0, -4, 2) | V0 → (0, 0, 0, 0) | V4ψ2−2ψ3 → (0, 0, 4, -2) | V−2ψ2+4ψ3 → (0, 0, -2, 4) | V4ψ1 → (0, 4, 0, 0) | V2ψ2+2ψ3 → (0, 0, 2, 2) | Vω1−2ψ1−2ψ2−2ψ3 → (1, -2, -2, -2) | Vω1−2ψ1+2ψ2−4ψ3 → (1, -2, 2, -4) | Vω1−2ψ1−4ψ2+2ψ3 → (1, -2, -4, 2) | Vω1+2ψ1−2ψ2−2ψ3 → (1, 2, -2, -2) | Vω1−2ψ1 → (1, -2, 0, 0) | Vω1+2ψ1+2ψ2−4ψ3 → (1, 2, 2, -4) | Vω1−2ψ1+4ψ2−2ψ3 → (1, -2, 4, -2) | Vω1+2ψ1−4ψ2+2ψ3 → (1, 2, -4, 2) | Vω1−2ψ1−2ψ2+4ψ3 → (1, -2, -2, 4) | Vω1+2ψ1 → (1, 2, 0, 0) | Vω1−2ψ1+2ψ2+2ψ3 → (1, -2, 2, 2) | Vω1+2ψ1+4ψ2−2ψ3 → (1, 2, 4, -2) | Vω1+2ψ1−2ψ2+4ψ3 → (1, 2, -2, 4) | Vω1+2ψ1+2ψ2+2ψ3 → (1, 2, 2, 2) | V2ω1−2ψ2−2ψ3 → (2, 0, -2, -2) | V2ω1+2ψ2−4ψ3 → (2, 0, 2, -4) | V2ω1−4ψ2+2ψ3 → (2, 0, -4, 2) | V2ω1 → (2, 0, 0, 0) | V2ω1+4ψ2−2ψ3 → (2, 0, 4, -2) | V2ω1−2ψ2+4ψ3 → (2, 0, -2, 4) | V2ω1+2ψ2+2ψ3 → (2, 0, 2, 2) | V3ω1−2ψ1 → (3, -2, 0, 0) | V3ω1+2ψ1 → (3, 2, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | W18 | W19 | W20 | W21 | W22 | W23 | W24 | W25 | W26 | W27 | W28 | W29 | W30 | W31 | W32 | W33 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 3ω1 ω1 −ω1 −3ω1 | 3ω1 ω1 −ω1 −3ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −2ψ2−2ψ3 | −4ψ1 | 2ψ2−4ψ3 | −4ψ2+2ψ3 | 0 | 4ψ2−2ψ3 | −2ψ2+4ψ3 | 4ψ1 | 2ψ2+2ψ3 | ω1−2ψ1−2ψ2−2ψ3 −ω1−2ψ1−2ψ2−2ψ3 | ω1−2ψ1+2ψ2−4ψ3 −ω1−2ψ1+2ψ2−4ψ3 | ω1−2ψ1−4ψ2+2ψ3 −ω1−2ψ1−4ψ2+2ψ3 | ω1+2ψ1−2ψ2−2ψ3 −ω1+2ψ1−2ψ2−2ψ3 | ω1−2ψ1 −ω1−2ψ1 | ω1+2ψ1+2ψ2−4ψ3 −ω1+2ψ1+2ψ2−4ψ3 | ω1−2ψ1+4ψ2−2ψ3 −ω1−2ψ1+4ψ2−2ψ3 | ω1+2ψ1−4ψ2+2ψ3 −ω1+2ψ1−4ψ2+2ψ3 | ω1−2ψ1−2ψ2+4ψ3 −ω1−2ψ1−2ψ2+4ψ3 | ω1+2ψ1 −ω1+2ψ1 | ω1−2ψ1+2ψ2+2ψ3 −ω1−2ψ1+2ψ2+2ψ3 | ω1+2ψ1+4ψ2−2ψ3 −ω1+2ψ1+4ψ2−2ψ3 | ω1+2ψ1−2ψ2+4ψ3 −ω1+2ψ1−2ψ2+4ψ3 | ω1+2ψ1+2ψ2+2ψ3 −ω1+2ψ1+2ψ2+2ψ3 | 2ω1−2ψ2−2ψ3 −2ψ2−2ψ3 −2ω1−2ψ2−2ψ3 | 2ω1+2ψ2−4ψ3 2ψ2−4ψ3 −2ω1+2ψ2−4ψ3 | 2ω1−4ψ2+2ψ3 −4ψ2+2ψ3 −2ω1−4ψ2+2ψ3 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1+4ψ2−2ψ3 4ψ2−2ψ3 −2ω1+4ψ2−2ψ3 | 2ω1−2ψ2+4ψ3 −2ψ2+4ψ3 −2ω1−2ψ2+4ψ3 | 2ω1+2ψ2+2ψ3 2ψ2+2ψ3 −2ω1+2ψ2+2ψ3 | 3ω1−2ψ1 ω1−2ψ1 −ω1−2ψ1 −3ω1−2ψ1 | 3ω1+2ψ1 ω1+2ψ1 −ω1+2ψ1 −3ω1+2ψ1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−2ψ2−2ψ3 | M−4ψ1 | M2ψ2−4ψ3 | M−4ψ2+2ψ3 | M0 | M4ψ2−2ψ3 | M−2ψ2+4ψ3 | M4ψ1 | M2ψ2+2ψ3 | Mω1−2ψ1−2ψ2−2ψ3⊕M−ω1−2ψ1−2ψ2−2ψ3 | Mω1−2ψ1+2ψ2−4ψ3⊕M−ω1−2ψ1+2ψ2−4ψ3 | Mω1−2ψ1−4ψ2+2ψ3⊕M−ω1−2ψ1−4ψ2+2ψ3 | Mω1+2ψ1−2ψ2−2ψ3⊕M−ω1+2ψ1−2ψ2−2ψ3 | Mω1−2ψ1⊕M−ω1−2ψ1 | Mω1+2ψ1+2ψ2−4ψ3⊕M−ω1+2ψ1+2ψ2−4ψ3 | Mω1−2ψ1+4ψ2−2ψ3⊕M−ω1−2ψ1+4ψ2−2ψ3 | Mω1+2ψ1−4ψ2+2ψ3⊕M−ω1+2ψ1−4ψ2+2ψ3 | Mω1−2ψ1−2ψ2+4ψ3⊕M−ω1−2ψ1−2ψ2+4ψ3 | Mω1+2ψ1⊕M−ω1+2ψ1 | Mω1−2ψ1+2ψ2+2ψ3⊕M−ω1−2ψ1+2ψ2+2ψ3 | Mω1+2ψ1+4ψ2−2ψ3⊕M−ω1+2ψ1+4ψ2−2ψ3 | Mω1+2ψ1−2ψ2+4ψ3⊕M−ω1+2ψ1−2ψ2+4ψ3 | Mω1+2ψ1+2ψ2+2ψ3⊕M−ω1+2ψ1+2ψ2+2ψ3 | M2ω1−2ψ2−2ψ3⊕M−2ψ2−2ψ3⊕M−2ω1−2ψ2−2ψ3 | M2ω1+2ψ2−4ψ3⊕M2ψ2−4ψ3⊕M−2ω1+2ψ2−4ψ3 | M2ω1−4ψ2+2ψ3⊕M−4ψ2+2ψ3⊕M−2ω1−4ψ2+2ψ3 | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M2ω1+4ψ2−2ψ3⊕M4ψ2−2ψ3⊕M−2ω1+4ψ2−2ψ3 | M2ω1−2ψ2+4ψ3⊕M−2ψ2+4ψ3⊕M−2ω1−2ψ2+4ψ3 | M2ω1+2ψ2+2ψ3⊕M2ψ2+2ψ3⊕M−2ω1+2ψ2+2ψ3 | M3ω1−2ψ1⊕Mω1−2ψ1⊕M−ω1−2ψ1⊕M−3ω1−2ψ1 | M3ω1+2ψ1⊕Mω1+2ψ1⊕M−ω1+2ψ1⊕M−3ω1+2ψ1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−2ψ2−2ψ3 | M−4ψ1 | M2ψ2−4ψ3 | M−4ψ2+2ψ3 | 3M0 | M4ψ2−2ψ3 | M−2ψ2+4ψ3 | M4ψ1 | M2ψ2+2ψ3 | Mω1−2ψ1−2ψ2−2ψ3⊕M−ω1−2ψ1−2ψ2−2ψ3 | Mω1−2ψ1+2ψ2−4ψ3⊕M−ω1−2ψ1+2ψ2−4ψ3 | Mω1−2ψ1−4ψ2+2ψ3⊕M−ω1−2ψ1−4ψ2+2ψ3 | Mω1+2ψ1−2ψ2−2ψ3⊕M−ω1+2ψ1−2ψ2−2ψ3 | 2Mω1−2ψ1⊕2M−ω1−2ψ1 | Mω1+2ψ1+2ψ2−4ψ3⊕M−ω1+2ψ1+2ψ2−4ψ3 | Mω1−2ψ1+4ψ2−2ψ3⊕M−ω1−2ψ1+4ψ2−2ψ3 | Mω1+2ψ1−4ψ2+2ψ3⊕M−ω1+2ψ1−4ψ2+2ψ3 | Mω1−2ψ1−2ψ2+4ψ3⊕M−ω1−2ψ1−2ψ2+4ψ3 | 2Mω1+2ψ1⊕2M−ω1+2ψ1 | Mω1−2ψ1+2ψ2+2ψ3⊕M−ω1−2ψ1+2ψ2+2ψ3 | Mω1+2ψ1+4ψ2−2ψ3⊕M−ω1+2ψ1+4ψ2−2ψ3 | Mω1+2ψ1−2ψ2+4ψ3⊕M−ω1+2ψ1−2ψ2+4ψ3 | Mω1+2ψ1+2ψ2+2ψ3⊕M−ω1+2ψ1+2ψ2+2ψ3 | M2ω1−2ψ2−2ψ3⊕M−2ψ2−2ψ3⊕M−2ω1−2ψ2−2ψ3 | M2ω1+2ψ2−4ψ3⊕M2ψ2−4ψ3⊕M−2ω1+2ψ2−4ψ3 | M2ω1−4ψ2+2ψ3⊕M−4ψ2+2ψ3⊕M−2ω1−4ψ2+2ψ3 | M2ω1⊕M0⊕M−2ω1 | 2M2ω1⊕2M0⊕2M−2ω1 | M2ω1+4ψ2−2ψ3⊕M4ψ2−2ψ3⊕M−2ω1+4ψ2−2ψ3 | M2ω1−2ψ2+4ψ3⊕M−2ψ2+4ψ3⊕M−2ω1−2ψ2+4ψ3 | M2ω1+2ψ2+2ψ3⊕M2ψ2+2ψ3⊕M−2ω1+2ψ2+2ψ3 | M3ω1−2ψ1⊕Mω1−2ψ1⊕M−ω1−2ψ1⊕M−3ω1−2ψ1 | M3ω1+2ψ1⊕Mω1+2ψ1⊕M−ω1+2ψ1⊕M−3ω1+2ψ1 |
2\\ |